00       00
  
Bug Report
Report an error
  

%0 Journal Article
%J PloS one
%D 2015
%T Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus.
%A Tian, Fengxia
%A Wang, Tan
%A Xie, Yuli
%A Zhang, Jin
%A Hu, Jianjun
%N 4
%P e0123225
%R 10.1371/journal.pone.0123225
%V 10
%X BACKGROUND: In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0.    PRINCIPAL FINDINGS: Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses.    CONCLUSIONS: The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars.
%8 2015

Login | Site Map | © 2017 PlantGenIE.org.| All our tools are under MIT License


  • GeneList
      view active genelist () here.
      genelist namegenesrenamedelete
      add empty genelist / save current list / cancel
  • SampleList
  • Analysis
  • <